

Course Syllabus

1	Course title	INDUSTRIAL CHEMISTRY I
2	Course number	0303351
3	Credit hours	3
	Contact hours (theory, practical)	3+0
4	Prerequisites/corequisites	Physical Chemistry I
5	Program title	Chemistry
6	Program code	03
7	Awarding institution	The University of Jordan
8	School	Science
9	Department	Chemistry
10	Course level	4 th year
11	Year of study and semester (s)	1 st semester 2023-2024
12	Other department (s) involved in teaching the course	none
13	Main teaching language	English
14	Delivery method	ce to face learning □Blended □Fully online
15	Online platforms(s)	□Moodle ■ Microsoft Teams □Skype □Zoom
13	Offine placiotins(s)	□Others
16	Issuing/Revision Date	
17 Co	ourse Coordinator:	
Nam	e: Prof. Dr. Imad Hamadneh	Contact hours: Sun, Tus, Thu 9:30-10;30
Offic	ce number: 28	Phone number: 22164
Ema	il: i.hamadneh@ju.edu.jo	

18 Other instructors:

ame:
ffice number:
hone number:
mail:
ontact hours:
ame:
ffice number:
hone number:
mail:
ontact hours:

19 Course Description:

This course covers the basic consideration, characteristics of the chemical industry, material and energy balance, raw materials for the chemical industry, production processes for organic chemical industries, basic chemicals from petroleum, industrial polymers, detergents, chemical industrial process development, the technology of chemical processes, selected industrial processes

20 Course aims and outcomes: مركز الاعتما

A- Aims: Course Learning Outcomes (0303351) Industrial Chemistry -1

Upon successful completion of this course, students will be able to:

- CLO-1. Problem-Solving: Graduates will be able to apply mathematical and scientific knowledge to calculate the reactor's volume, the reaction's ordering, the separation techniques, and the reaction time. (ASO-1)
- CLO-2. Identify, formulate, and solve technical or scientific problems relevant to Industrial Chemistry. (ASO-1 &ASO-2)
- CLO-3. Communication: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences. (ASO-1 &ASO-5)

B- Students Learning Outcomes (SLOs):

- SO-1. Problem Solving: Graduates will be able to apply mathematical and scientific knowledge to identify, formulate, and solve technical or scientific problems relevant to the discipline of chemistry.
- SO-2. Design: Graduates will be able to use their understanding of chemistry concepts and principles to formulate and design systems, processes, procedures, or programs to meet desired goals and outcomes.
- SO-3. Experimental Skills: Graduates will be able to design, conduct, and analyze experiments or test hypotheses, utilizing appropriate chemical techniques and scientific judgment to draw meaningful conclusions.
- SO-4. Communication: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences.
- SO-5. Ethics and Global Context: Graduates will understand and apply ethical and professional responsibilities in the context of the impact of technical and scientific solutions on global, economic, environmental, and societal issues.
- SO-6. Teamwork: Graduates will be able to work effectively as part of a team, establishing goals, planning tasks, meeting deadlines, and analyzing risk and uncertainty in the context of chemistry-related projects and initiatives.
- SO-7. Handling Chemicals: An ability to apply the proper procedures for safe handling of chemicals.

	SLO (1)	SLO (2)	SLO (3)	SLO (4)	SLO (5)
SLOs					
SLOs of the					
course					
CLO-1	√				
CLO-2	✓	√			
CLO-3	✓				✓
	•	•		•	<u> </u>

21. Topic Outline and Schedule:

Week	Lectur e	Topic	Student Learnin g Outcom e	Learning Methods (Face to Face/Blended / Fully Online)	Platform	Synchrono us / Asynchron ous Lecturing	Evaluation Methods	Resources
	1.1	Introduction	CLO1 CLO 2	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
1	1.2	characteristics	CLO1 CLO 2	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	1.3	History	CLO1 CLO 2 CLO3	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
2	2.1	Industrial Chemical Kinetics	CLO1 CLO 2	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistry,

ACCREDITATION & GIVILITY ASSURANCE CENTE	1						Blackie, Glasgow,
							1991
	2.2	Reaction Control and orders	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	2.3	0 th , 1 st , and 2 nd order kinetics	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	3.1	Industrial Catalysis and Catalysts: Kinetics of industrial catalytic processes	CLO1 CLO 2 CLO3	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
3	3.2	Structure and preparation.	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	3.3	heterogeneous catalysts	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	4.1	Industrial Separation Processes	CLO1 CLO 2 CLO3	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
4	4.2	Phase separation	CLO1 CLO 2 CLO3	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	4.3	Distillation, Extraction.	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
5	5.1	Energy Introduction, Classification of fuels.	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	5.2	Calorific value of a fuel.	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry,

ACCREDITATION & QUALITY ASSURANCE CENTE	ER .						Blackie, Glasgow,
							1991
	5.3	Types of energy used in the chemical industry.	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	6.1	Organic Chemicals from Coal	CLO1 CLO 2	Face to Face	Classroom		Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	0.1	Origin of coal, Types of coal, Carbonization of coal.				2 nd Exam	
6	6.2	high and low- temperature carbonization	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	6.3	Liquid fuels from coal (Coal hydrogenation)	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	7.1	Gasification, Fuel gases	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
7	7.2	water gas.	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	7.3	natural gas.	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	8.1	Syngas. Cracking processes.	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
8	8.2	Reforming processes.	CLO2 CLO3	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	8.3	Direct oxidation.	CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991

ACCREDITATION & QUALITY ASSURANCE CENTER		_					
	9.1	II-Primary Petrochemical s I Alkanes, Alkenes, and Alkynes	CLO 2	Face to Face	Classroom		Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
		Methane and carbon monoxide,					
9						2 nd Exam	
	9.2	C2-C3, Acetylene, Ethylene, Propylene.	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	9.3	C4 hydrocarbons	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	10.1	III-Primary Petrochemical s II Aromatic hydrocarbons	CLO1 CLO 2	Face to Face	Classroom		Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
		Introduction				2 nd Exam	
10	10.2	Manufacturing routes, Benzene,	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	10.3	Manufacturing routes, Xylenes, Cumene	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
11	11.1	Dyestuff Industry- organic	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
11	11.2	Dyestuff Industry- inorganic	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
12	11.3	Polymer Industry,	CLO1 CLO 2	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991

ACCREDITATION & GUALITY ASSURANCE CENTER			CLO 2	Face to Face	Classroom	Final Exam	C. A. Heaton, An
	12.1	classifications	CLU 2		Classicolli	r mai Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	12.2	Type of synthesis	CLO1 CLO 2 CLO3	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
12 13	12.3	properties	CLO1 CLO 2	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	13.1	Elastomer's	CLO1 CLO 2	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	13.2	Natural & Synthetic Elastomers	CLO1 CLO 2	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
13 14	13.3	Chemical synthesis of elastomers	CLO1 CLO 2	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	14.1	Cellulose and Paper Industry	CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	14.2	Fibers	CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
14 15	14.3	Detergent Industry.	CLO1 CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	15.1	Chemical Industry in Jordan: Introduction	CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
15	15.2	NaCl, KCl	CLO 2 CLO3	Face to Face	Classroom		Introduction of Industrial Chemistry,

					Blackie, Glasgow, 1991	
15.3	Phosphate industry	CLO 2 CLO3	Classroom		Introduction of Industrial Chemistr Blackie, Glasgow, 1991	
			Classroom			

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
1 st exam		1.The Chemical Industry Characteristics, History 2.Industrial Chemical Kinetics and Reaction Control, Batch processes, Continuous processes, Industrial Catalysis and Catalysts 3.Industrial Separation Processes, Phase	CLO1 CLO 2 CLO3		
	30%	separation, Distillation, Extraction.		5 th week	In the department
2 nd exam	20%	Energy: Classification of fuels. Organic Chemicals from Coal, and petrol Organic Chemicals from Petroleum and Natural Gas. Preparation of Primary Petrochemicals	CLO1 CLO 2 CLO3	10 th week	In the department

		Industrial Chemical Kinetics and Reaction Control Industrial Separation. Energy, Organic	CLO1 CLO 2 CLO3		
Final		Chemicals from Coal, and petrol Organic Chemicals from Petroleum and Natural Gas.			
		Dyestuff Industry, Paper and Cellulose Industry, Polymer Industry, Detergent Industry			In the
	50%			17 th week	department

23 Course Requirements

(e.g. students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

24 Course Policies:

- A- Attendance policies:
- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:
- E- Grading policy:
- F- Available university services that support achievement in the course:

25 References:

26 Additional information:

A- Required book(s), assigned reading and audio-visuals:

- 1. C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
- 2. H. White, Introduction to Industrial Chemistry, Wiley-interscience, New York, 1986

B- Recommended books, materials, and media:

- 1. 1 P. Chenier Survey of Industrial Chemistry, Third Edition, Kluwer Academic / Plenum Publishers, New York, 2002,
- 2. H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, Second Edition, John Wiley, Wiley-Interscience, 2004.
- 3. K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Second Edition, VCH, Weinheim, Germany, 1993
- 4. Basic Organic Chemistry Part 5: Industrial Products, J. M. Tedder, A. Nechvatal, A. H. Jubb, John Wiley, Chichester, 1975

Name of Course Coordinator:Imad Hamadneh	Signature: Date:
Head of Curriculum Committee/Department:	Cignoturo
	Signature
Head of Department:	Signature:
-	
Head of Curriculum Committee/Faculty:	Signature:
-	
Dean:	Signature: